Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.145
Filter
1.
Front Immunol ; 15: 1385101, 2024.
Article in English | MEDLINE | ID: mdl-38725998

ABSTRACT

Background: Immunopathology in food allergy is characterized by an uncontrolled type 2 immune response and specific-IgE production. Recent studies have determined that group 2 innate lymphoid cells (ILC2) participate in the food allergy pathogenic mechanism and their severity. Our objective was to investigate the role of ILC2 in peach-allergic patients due to non-specific lipid transfer protein (Pru p 3) sensitization. Methods: The immune response in peripheral blood mononuclear cells was characterized in lipid transfer protein-allergic patients and healthy controls. We have analyzed the Pru p 3 uptake on ILC2, the expression of costimulatory molecules, and their involvement on the T-cell proliferative response and cytokine production under different experimental conditions: cytokines involved in group 2 innate lymphoid cell activation (IL-33 and IL-25), Pru p 3 as main food allergen, and the combination of both components (IL-33/IL-25+Pru p 3) using cell sorting, EliSpot, flow cytometry, and confocal microscopy. Results: Our results show that Pru p 3 allergen is taken up by group 2 innate lymphoid cells, regulating their costimulatory molecule expression (CD83 and HLA-DR) depending on the presence of Pru p 3 and its combination with IL-33/IL-25. The Pru p 3-stimulated ILC2 induced specific GATA3+Th2 proliferation and cytokine (IL-4, IL-5, and IL-13) production in lipid transfer protein-allergic patients in a cell contact-dependent manner with no changes in Tbet+Th1- and FOXP3+Treg cell differentiation. Conclusions: The results indicate that in lipid transfer protein-allergic patients, the responsible allergen, Pru p 3, interacts with group 2 innate lymphoid cells, promoting a Th2 cell response. Our results might be of interest in vivo, as they show a role of group 2 innate lymphoid cells as antigen-presenting cells, contributing to the development of food allergy. Consequently, group 2 innate lymphoid cells may be considered as potential therapeutic targets.


Subject(s)
Antigens, Plant , Carrier Proteins , Food Hypersensitivity , Immunity, Innate , Humans , Food Hypersensitivity/immunology , Female , Antigens, Plant/immunology , Carrier Proteins/immunology , Male , Adult , Cytokines/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Plant Proteins/immunology , Lymphocyte Activation/immunology , Young Adult , Middle Aged
2.
J Huntingtons Dis ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38728199

ABSTRACT

Huntingtin (HTT) protein is expressed in most cell lineages, and the toxicity of mutant HTT in multiple organs may contribute to the neurological and psychiatric symptoms observed in Huntington's disease (HD). The proteostasis and neurotoxicity of mutant HTT are influenced by the intracellular milieu and responses to environmental signals. Recent research has highlighted a prominent role of gut microbiota in brain and immune system development, aging, and the progression of neurological disorders. Several studies suggest that mutant HTT might disrupt the homeostasis of gut microbiota (known as dysbiosis) and impact the pathogenesis of HD. Dysbiosis has been observed in HD patients, and in animal models of the disease it coincides with mutant HTT aggregation, abnormal behaviors, and reduced lifespan. This review article aims to highlight the potential toxicity of mutant HTT in organs and pathways within the microbiota-gut-immune-central nervous system (CNS) axis. Understanding the functions of Wild-Type (WT) HTT and the toxicity of mutant HTT in these organs and the associated networks may elucidate novel pathogenic pathways, identify biomarkers and peripheral therapeutic targets for HD.

3.
J Infect Dis ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728418

ABSTRACT

Neutrophils possess a diverse repertoire of pathogen clearance mechanisms, one of which is the formation of neutrophil extracellular traps (NETs). NETs are complexes of histone proteins and DNA coated with proteolytic enzymes that are released extracellularly to entrap pathogens and aid in their clearance, in a process known as NETosis. Intravascular NETosis may drive a massive inflammatory response that has been shown to contribute to morbidity and mortality in many infectious diseases, including malaria, dengue fever, influenza, bacterial sepsis, and SARS-CoV-2 infection. In this review we seek to: (1) summarize the current understanding of NETs; (2) discuss infectious diseases in which NET formation contributes to morbidity and mortality; and (3) explore potential adjunctive therapeutics that may be considered for future study in treating severe infections driven by NET pathophysiology. This includes drugs specifically targeting NET inhibition and FDA-approved drugs that may be repurposed as NET inhibitors.

4.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690733

ABSTRACT

BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTSIncreasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSIONOur longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATIONClinicalTrials.gov NCT04378777.FUNDINGNIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).


Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/mortality , COVID-19/blood , Male , Longitudinal Studies , SARS-CoV-2/immunology , Female , Middle Aged , Aged , Adult , Cytokines/blood , Cytokines/immunology , Multiomics
5.
Front Cell Infect Microbiol ; 14: 1365221, 2024.
Article in English | MEDLINE | ID: mdl-38711929

ABSTRACT

Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.


Subject(s)
Bunyaviridae Infections , Immunity, Innate , Orthobunyavirus , Bunyaviridae Infections/immunology , Bunyaviridae Infections/virology , Humans , Animals , Orthobunyavirus/immunology , Host-Pathogen Interactions/immunology , Interferons/immunology , Interferons/metabolism , Signal Transduction , Cytokines/metabolism , Cytokines/immunology , Vector Borne Diseases/immunology , Vector Borne Diseases/virology , Vector Borne Diseases/prevention & control , Virus Replication
6.
J Clin Invest ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722686

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) are key players in intestinal homeostasis. Endoplasmic reticulum (ER) stress is linked to inflammatory bowel disease (IBD). Herein, we used cell culture, mouse models, and human specimens to examine if ER stress in ILC3s impacts IBD pathophysiology. We show that mouse intestinal ILC3s exhibited a 24h-rhythmic expression pattern of the master ER stress response regulator, IRE1α/XBP1. Proinflammatory cytokine IL-23 selectively stimulated IRE1α/XBP1 in mouse ILC3s through mitochondrial reactive oxygen species (mtROS). IRE1α/XBP1 was activated in ILC3s of mice exposed to experimental colitis and in inflamed human IBD specimens. Mice with Ire1α deletion in ILC3s (Ire1αΔRorc) showed reduced expression of ER stress response and cytokine genes including Il22 in ILC3s and were highly vulnerable to infections and colitis. Administration of IL-22 counteracted their colitis susceptibility. In human ILC3s, IRE1 inhibitors suppressed cytokine production, which was upregulated by an IRE1 activator. Moreover, the frequencies of intestinal XBP1s+ ILC3s in Crohn's disease patients before administration of ustekinumab, an anti-IL-12/IL-23 antibody, positively correlated with response to treatment. We demonstrate that a non-canonical mtROS-IRE1α/XBP1 pathway augments cytokine production by ILC3s and identify XBP1s+ ILC3s as a potential biomarker for predicting response to anti-IL-23 therapies in IBD.

7.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731826

ABSTRACT

Although Herpes simplex virus type 1 (HSV-1) has been deeply studied, significant gaps remain in the fundamental understanding of HSV-host interactions: our work focused on studying the Infected Cell Protein 27 (ICP27) as an inhibitor of the Absent-in-melanoma-2 (AIM 2) inflammasome pathway, leading to reduced pro-inflammatory cytokines that influence the activation of a protective innate immune response to infection. To assess the inhibition of the inflammasome by the ICP27, hTert-immortalized Retinal Pigment Epithelial cells (hTert-RPE 1) infected with HSV-1 wild type were compared to HSV-1 lacking functional ICP27 (HSV-1∆ICP27) infected cells. The activation of the inflammasome by HSV-1∆ICP27 was demonstrated by quantifying the gene and protein expression of the inflammasome constituents using real-time PCR and Western blot. The detection of the cleavage of the pro-caspase-1 into the active form was performed by using a bioluminescent assay, while the quantification of interleukins 1ß (IL-1ß) and 18 (IL-18)released in the supernatant was quantified using an ELISA assay. The data showed that the presence of the ICP27 expressed by HSV-1 induces, in contrast to HSV-1∆ICP27 vector, a significant downregulation of AIM 2 inflammasome constituent proteins and, consequently, the release of pro-inflammatory interleukins into the extracellular environment reducing an effective response in counteracting infection.


Subject(s)
Cytokines , Herpesvirus 1, Human , Immediate-Early Proteins , Inflammasomes , Retinal Pigment Epithelium , Humans , Inflammasomes/metabolism , Herpesvirus 1, Human/physiology , Cytokines/metabolism , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Cell Line , Herpes Simplex/immunology , Herpes Simplex/metabolism , Herpes Simplex/virology , DNA-Binding Proteins
8.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732017

ABSTRACT

Intelectins belong to a family of lectins with specific and transitory carbohydrate interaction capabilities. These interactions are related to the activity of agglutinating pathogens, as intelectins play a significant role in immunity. Despite the prominent immune defense function of intelectins, limited information about its structural characteristics and carbohydrate interaction properties is available. This study investigated an intelectin transcript identified in RNA-seq data obtained from the South American lungfish (Lepidosiren paradoxa), namely LpITLN2-B. The structural analyses predicted LpITLN2-B to be a homo-trimeric globular protein with the fibrinogen-like functional domain (FReD), exhibiting a molecular mass of 57 kDa. The quaternary structure is subdivided into three monomers, A, B, and C, and each domain comprises 11 ß-sheets: an anti-parallel ß-sheet, a ß-hairpin, and a disordered ß-sheet structure. Molecular docking demonstrates a significant interaction with disaccharides rather than monosaccharides. The preferential interaction with disaccharides highlights the potential interaction with pathogen molecules, such as LPS and Poly(I:C). The hemagglutination assay inhibited lectins activity, especially maltose and sucrose, highlighting lectin activity in L. paradoxa samples. Overall, our results show the potential relevance of LpITLN2-B in L. paradoxa immune defense against pathogens.


Subject(s)
Fish Proteins , Fishes , Immunity, Innate , Lectins , Animals , Lectins/chemistry , Lectins/metabolism , Lectins/immunology , Lectins/genetics , Fishes/immunology , Fishes/genetics , Fish Proteins/genetics , Fish Proteins/chemistry , Fish Proteins/immunology , Fish Proteins/metabolism , Molecular Docking Simulation , Amino Acid Sequence , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology
9.
J Immunother Cancer ; 12(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38702144

ABSTRACT

BACKGROUND: Natural killer (NK) cells are key effector cells of antitumor immunity. However, tumors can acquire resistance programs to escape NK cell-mediated immunosurveillance. Identifying mechanisms that mediate this resistance enables us to define approaches to improve immune-mediate antitumor activity. In previous studies from our group, a genome-wide CRISPR-Cas9 screen identified Charged Multivesicular Body Protein 2A (CHMP2A) as a novel mechanism that mediates tumor intrinsic resistance to NK cell activity. METHODS: Here, we use an immunocompetent mouse model to demonstrate that CHMP2A serves as a targetable regulator of not only NK cell-mediated immunity but also other immune cell populations. Using the recently characterized murine 4MOSC model system, a syngeneic, tobacco-signature murine head and neck squamous cell carcinoma model, we deleted mCHMP2A using CRISPR/Cas9-mediated knock-out (KO), following orthotopic transplantation into immunocompetent hosts. RESULTS: We found that mCHMP2A KO in 4MOSC1 cells leads to more potent NK-mediated tumor cell killing in vitro in these tumor cells. Moreover, following orthotopic transplantation, KO of mCHMP2A in 4MOSC1 cells, but not the more immune-resistant 4MOSC2 cells enables both T cells and NK cells to better mediate antitumor activity compared with wild type (WT) tumors. However, there was no difference in tumor development between WT and mCHMP2A KO 4MOSC1 or 4MOSC2 tumors when implanted in immunodeficient mice. Mechanistically, we find that mCHMP2A KO 4MOSC1 tumors transplanted into the immunocompetent mice had significantly increased CD4+T cells, CD8+T cells. NK cell, as well as fewer myeloid-derived suppressor cells (MDSC). CONCLUSIONS: Together, these studies demonstrate that CHMP2A is a targetable inhibitor of cellular antitumor immunity.


Subject(s)
Disease Models, Animal , Head and Neck Neoplasms , Killer Cells, Natural , Squamous Cell Carcinoma of Head and Neck , Animals , Mice , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/genetics , Killer Cells, Natural/immunology , Humans , Cell Line, Tumor , Immunocompetence
10.
Front Neural Circuits ; 18: 1409994, 2024.
Article in English | MEDLINE | ID: mdl-38742089

ABSTRACT

Pheromones are specialized chemical messengers used for inter-individual communication within the same species, playing crucial roles in modulating behaviors and physiological states. The detection mechanisms of these signals at the peripheral organ and their transduction to the brain have been unclear. However, recent identification of pheromone molecules, their corresponding receptors, and advancements in neuroscientific technology have started to elucidate these processes. In mammals, the detection and interpretation of pheromone signals are primarily attributed to the vomeronasal system, which is a specialized olfactory apparatus predominantly dedicated to decoding socio-chemical cues. In this mini-review, we aim to delineate the vomeronasal signal transduction pathway initiated by specific vomeronasal receptor-ligand interactions in mice. First, we catalog the previously identified pheromone ligands and their corresponding receptor pairs, providing a foundational understanding of the specificity inherent in pheromonal communication. Subsequently, we examine the neural circuits involved in processing each pheromone signal. We focus on the anatomical pathways, the sexually dimorphic and physiological state-dependent aspects of signal transduction, and the neural coding strategies underlying behavioral responses to pheromonal cues. These insights provide further critical questions regarding the development of innate circuit formation and plasticity within these circuits.


Subject(s)
Pheromones , Signal Transduction , Vomeronasal Organ , Animals , Pheromones/physiology , Mice , Signal Transduction/physiology , Vomeronasal Organ/physiology
11.
Front Immunol ; 15: 1393283, 2024.
Article in English | MEDLINE | ID: mdl-38742111

ABSTRACT

For decades, innate immune cells were considered unsophisticated first responders, lacking the adaptive memory of their T and B cell counterparts. However, mounting evidence demonstrates the surprising complexity of innate immunity. Beyond quickly deploying specialized cells and initiating inflammation, two fascinating phenomena - endotoxin tolerance (ET) and trained immunity (TI) - have emerged. ET, characterized by reduced inflammatory response upon repeated exposure, protects against excessive inflammation. Conversely, TI leads to an enhanced response after initial priming, allowing the innate system to mount stronger defences against subsequent challenges. Although seemingly distinct, these phenomena may share underlying mechanisms and functional implications, blurring the lines between them. This review will delve into ET and TI, dissecting their similarities, differences, and the remaining questions that warrant further investigation.


Subject(s)
Endotoxins , Immune Tolerance , Immunity, Innate , Immunologic Memory , Humans , Animals , Endotoxins/immunology , Inflammation/immunology , Adaptive Immunity , Trained Immunity
12.
JCI Insight ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713518

ABSTRACT

Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. Receptor interacting protein kinase-3 (RIPK3) signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of damage associated molecular pattern (DAMP) signaling. In mechanistic experiments, we show that factors released from dying neurons signal through receptor for advanced glycation endproducts (RAGE) to induce astrocytic RIPK3 signaling, which conferred inflammatory and neurotoxic functional activity. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.

13.
Article in English | MEDLINE | ID: mdl-38713619

ABSTRACT

The house dust mite (HDM) represents a major cause of allergic rhinitis and asthma. We tested whether HDM-induced aeroallergen exposure sensitivity is caused by the innate-immune response in small airway epithelial cells. HDM exposure rapidly activates NFkB/RelA in the Secretoglobin (Scgb1a1+) lineage and upregulates markers of epithelial plasticity. To determine the effect of epithelial NFkB signaling, NFkB was depleted in a tamoxifen (TMX)-inducible Scgb1a1-CreERTM mouse within a CL57B/L6 background. Corn oil or TMX-treated/RelA-depleted (RelA KD) mice were repetitively exposed to airway HDM challenges to induce airway hyperresponsiveness (AHR). Strikingly, we observed that HDM induces hallmarks of epithelial plasticity through upregulation of the mesenchymal core factors SNAI1 and ZEB1 and production of MMP9 that are RelA dependent. Downstream, HDM-induced mucous metaplasia, Th2 polarization, allergen sensitivity and airway hyperreactivity were all reduced in the RelA-depleted mice. Mechanistically, HDM-induced functional and structural barrier disruption was dependent on RelA signaling and associated with active MMP secretion into the bronchoalveolar lavage fluid. To establish the role of MMP2/9 in barrier disruption, we observe that a small-molecule MMP inhibitor (SB-3CT) blocked HDM-induced barrier disruption and activation of plasticity in naïve wild-type mice. Loss of functional barrier was associated with MMP disruption of ZO-1 containing adherens junctions. Overall, this data indicates that host innate signaling in the Scgb1a1+ progenitors is directly linked to epithelial plasticity, MMP9 secretion, and enhanced barrier permeability which allows allergen penetration, sensitization producing allergic asthma (AA) in vivo. We propose that maintenance of epithelial integrity may reduce allergic sensitization and AA.

14.
Article in English | MEDLINE | ID: mdl-38734386

ABSTRACT

BACKGROUND: The contribution of Staphylococcus aureus (S. aureus) to the exacerbation of atopic dermatitis (AD) is widely documented, but its role as a primary trigger of AD skin symptoms remains poorly explored. OBJECTIVE: To reappraise the main bacterial factors and underlying immune mechanisms by which S. aureus triggers AD-like inflammation. METHODS: We capitalized on a pre-clinical model, in which different clinical isolates were applied in the absence of any prior experimental skin injury. RESULTS: We report that the development of S. aureus-induced dermatitis depended on the nature of the S. aureus strain, its viability, the concentration of the applied bacterial suspension, the production of secreted and non-secreted factors, as well as the activation of accessory gene regulatory quorum sensing system. In addition, the rising dermatitis, which exhibited the well-documented AD cytokine signature, was significantly inhibited in inflammasome adaptor protein ASC- and monocyte/macrophage-deficient animals, but not in T- and B-cell-deficient mice, suggesting a major role for the innate response in the induction of skin inflammation. However, bacterial exposure generated a robust adaptive immune response against S. aureus, and an accumulation of S. aureus-specific γδ and CD4+ tissue resident memory T (Trm) cells at the site of previous dermatitis. The latter both contributed to worsen the flares of AD-like dermatitis upon new bacteria exposures, but also, protected the mice from persistent bacterial colonization. CONCLUSION: These data highlight the induction of unique AD-like inflammation, with the generation of pro-inflammatory but protective Trm cells in a context of natural exposure to pathogenic S. aureus strains.

15.
J Autoimmun ; : 103247, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38734536

ABSTRACT

Sarcoidosis is a granulomatous multiorgan disease, thought to result from exposure to yet unidentified antigens in genetically susceptible individuals. The exaggerated inflammatory response that leads to granuloma formation is highly complex and involves the innate and adaptive immune system. Consecutive immunological studies using advanced technology have increased our understanding of aberrantly activated immune cells, mediators and pathways that influence the formation, maintenance and resolution of granulomas. Over the years, it has become increasingly clear that disease immunopathogenesis can only be understood if the clinical heterogeneity of sarcoidosis is taken into consideration, along with the distribution of immune cells in peripheral blood and involved organs. Most studies offer an immunological snapshot during disease course, while the cellular composition of both the circulation and tissue microenvironment may change over time. Despite these challenges, novel insights on the role of the immune system are continuously published, thus bringing the field forward. This review highlights current knowledge on the innate and adaptive immune responses involved in sarcoidosis pathogenesis, as well as the pathways involved in non-resolving disease and fibrosis development. Additionally, we describe proposed immunological mechanisms responsible for drug-induced sarcoid like reactions. Although many aspects of disease immunopathogenesis remain to be unraveled, the identification of crucial immune reactions in sarcoidosis may help identify new treatment targets. We therefore also discuss potential therapies and future strategies based on the latest immunological findings.

16.
J Biol Chem ; : 107338, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705391

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize small molecule metabolites presented by MHC-I related protein 1 (MR1), via an αß T cell receptor (TCR). MAIT TCRs feature an essentially invariant TCR α-chain, which is highly conserved between mammals. Similarly, MR1 is the most highly conserved MHC-I like molecule. This extreme conservation, including the mode of interaction between the MAIT TCR and MR1, has been shown to allow for species-mismatched reactivities unique in T cell biology thereby allowing the use of selected species-mismatched MR1-antigen (MR1-Ag) tetramers in comparative immunology studies. However, the pattern of cross-reactivity of species-mismatched MR1-Ag tetramers in identifying MAIT cells in diverse species has not been formally assessed. We developed novel cattle and pig MR1-Ag tetramers and utilized these alongside previously developed human, mouse and pig-tailed macaque MR1-Ag tetramers to characterize cross-species tetramer reactivities. MR1-Ag tetramers from each species identified T cell populations in distantly related species with specificity that was comparable to species-matched MR1-Ag tetramers. However, there were subtle differences in staining characteristics with practical implications for the accurate identification of MAIT cells. Pig MR1 is sufficiently conserved across species that pig MR1-Ag tetramers identified MAIT cells from the other species. However, MAIT cells in pigs were at the limits of phenotypic detection. In the absence of sheep MR1-Ag tetramers, a MAIT cell population in sheep blood was identified phenotypically, utilizing species-mismatched MR1-Ag tetramers. Collectively, our results validate the use and limitations of species-mismatched MR1-Ag tetramers in comparative immunology studies.

17.
Front Med (Lausanne) ; 11: 1414997, 2024.
Article in English | MEDLINE | ID: mdl-38725463

ABSTRACT

[This corrects the article DOI: 10.3389/fmed.2024.1362336.].

18.
Article in English | MEDLINE | ID: mdl-38697357

ABSTRACT

BACKGROUND AND AIMS: Humans with WNT2B deficiency have severe intestinal disease, including significant inflammatory injury, highlighting a critical role for WNT2B. We sought to understand how WNT2B contributes to intestinal homeostasis. METHODS: We investigated the intestinal health of Wnt2b knock out (KO) mice. We assessed the baseline histology and health of the small intestine and colon, as well as the impact of inflammatory challenge using dextran sodium sulfate (DSS). We also evaluated human intestinal tissue. RESULTS: Mice with WNT2B deficiency had normal baseline histology but enhanced susceptibility to DSS colitis due to an increased early injury response. While ISC markers were decreased, epithelial proliferation was similar to controls. Wnt2b KO mice showed an enhanced inflammatory signature after DSS treatment. Wnt2b KO colon and human WNT2B-deficient organoids both had increased levels of CXCR4 and IL6, and biopsy tissue from humans showed increased neutrophils. CONCLUSION: WNT2B is important for regulation of inflammation in the intestine. Absence of WNT2B leads to increased expression of inflammatory cytokines and increased susceptibility to gastrointestinal inflammation, particularly in the colon.

19.
Front Immunol ; 15: 1360412, 2024.
Article in English | MEDLINE | ID: mdl-38745652

ABSTRACT

A robust immune response is required for resistance to pulmonary tuberculosis (TB), the primary disease caused by Mycobacterium tuberculosis (Mtb). However, pharmaceutical inhibition of T cell immune checkpoint molecules can result in the rapid development of active disease in latently infected individuals, indicating the importance of T cell immune regulation. In this study, we investigated the potential role of CD200R during Mtb infection, a key immune checkpoint for myeloid cells. Expression of CD200R was consistently downregulated on CD14+ monocytes in the blood of subjects with active TB compared to healthy controls, suggesting potential modulation of this important anti-inflammatory pathway. In homogenized TB-diseased lung tissue, CD200R expression was highly variable on monocytes and CD11b+HLA-DR+ macrophages but tended to be lowest in the most diseased lung tissue sections. This observation was confirmed by fluorescent microscopy, which showed the expression of CD200R on CD68+ macrophages surrounding TB lung granuloma and found expression levels tended to be lower in macrophages closest to the granuloma core and inversely correlated with lesion size. Antibody blockade of CD200R in a biomimetic 3D granuloma-like tissue culture system led to significantly increased Mtb growth. In addition, Mtb infection in this system reduced gene expression of CD200R. These findings indicate that regulation of myeloid cells via CD200R is likely to play an important part in the immune response to TB and may represent a potential target for novel therapeutic intervention.


Subject(s)
Mycobacterium tuberculosis , Myeloid Cells , Tuberculosis, Pulmonary , Humans , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Orexin Receptors/metabolism , Macrophages/immunology , Macrophages/metabolism , Adult , Female , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Middle Aged , Lung/immunology , Lung/microbiology , Lung/pathology , Lung/metabolism , Biomimetics , Monocytes/immunology , Monocytes/metabolism
20.
Explor Target Antitumor Ther ; 5(2): 296-315, 2024.
Article in English | MEDLINE | ID: mdl-38745765

ABSTRACT

Innate lymphoid cells (ILCs) are the most recently discovered class of innate immune cells found to have prominent roles in various human immune-related pathologies such as infection and autoimmune diseases. However, their role in cancer was largely unclear until recently, where several emerging studies over the past few years unanimously demonstrate ILCs to be critical players in tumour immunity. Being the innate counterpart of T cells, ILCs are potent cytokine producers through which they orchestrate the overall immune response upstream of adaptive immunity thereby modulating T cell function. Out of the major ILC subsets, ILC1s have gained significant traction as potential immunotherapeutic candidates due to their central involvement with the anti-tumour type 1 immune response. ILC1s are potent producers of the well-established anti-tumour cytokine interferon γ (IFNγ), and exert direct cytotoxicity against cancer cells in response to the cytokine interleukin-15 (IL-15). However, in advanced diseases, ILC1s are found to demonstrate an exhausted phenotype in the tumour microenvironment (TME) with impaired effector functions, characterised by decreased responsiveness to cytokines and reduced IFNγ production. Tumour cells produce immunomodulatory cytokines such as transforming growth factor ß (TGFß) and IL-23, and through these suppress ILC1 anti-tumour actfivities and converts ILC1s to pro-tumoural ILC3s respectively, resulting in disease progression. This review provides a comprehensive overview of ILC1s in tumour immunity, and discusses the exciting prospects of harnessing ILC1s for cancer immunotherapy, either alone or in combination with cytokine-based treatment. The exciting prospects of targeting the upstream innate immune system through ILC1s may surmount the limitations associated with adaptive immune T cell-based strategies used in the clinic currently, and overcome cancer immunotherapeutic resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...